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SUMMARY

The lubrication theory is extended for transient free-surface �ow of a viscous �uid inside three-
dimensional symmetric thin cavities of thickness that varies in the �ow direction. The problem is �rst
formulated for a cavity of arbitrary shape. The moving domain is mapped onto a rectangular domain
at each time step of the computation. The pressure, which in this case is governed by the modi�ed
Laplace’s equation, is expanded in a Fourier series in the spanwise direction. The expansion coe�cients
are obtained using the �nite-di�erence method. Only a few modes are usually needed to secure conver-
gence. The �ow behaviour is strongly in�uenced by the cavity thickness. The �ows inside a straight,
contracting, expanding, and modulated cavities are examined. It is found that while the evolution of the
front is always monotonic with time, that of the velocity at the front can be oscillatory if the degree
of contraction of the cavity (whether modulated or not) is signi�cant. The velocity of the contact point
along the lateral walls is usually larger than that at the front, leading to the straightening of the front.
However, for modulated cavities, the front may advance at a faster rate, leading to its own undulation.
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1. INTRODUCTION

The modelling and simulation of free-surface cavity �ow have been the object of consider-
able interest over the last two decades. The interest in this area of research activity is largely
due to the need for our understanding of the �ow during the fabrication of plastic parts as
encountered in the processing industry, particularly in injection moulding. Modelling of the
�ow in these processes represent several major challenges since it is inherently transient,
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non-isothermal, and includes a free surface moving through cavities of highly irregular ge-
ometry. Despite the continuous development of new solution techniques, and the advent of
powerful computational platforms, the simulation of free-surface �ow inside a cavity remains
challenging. For transient free-surface �ow, the presence of geometrical non-linearities, cou-
pled to material non-linearities, such as inertia (die casting) and non-Newtonian (injection
moulding) e�ects, make the moving-domain problem di�cult to solve and understand.
Due to limited computational resources, the three-dimensional �ow problem has custom-

arily been simpli�ed to a two-dimensional problem, based on the observation of Hele-Shaw
[1–3]. The method is closely related to the lubrication or shallow-water theory for Newtonian
�ow [4]. In this approach, the cavity is assumed to be thin, and out of plane �ows are ne-
glected. Richardson [5] was the �rst to propose this method for moulding �ow. He examined
Newtonian, isothermal �ow inside cavities of simple geometry. Three decades later, the lu-
brication assumption remains the basis for the simulation of free-surface �ow of thin �lms
[6–8]. Various �ow con�gurations were analysed: Kamal and Kenig [9], Winter [10], and
Berger and Gogos [11] have examined the case of radial �ow from a central injection point.
White [12], Broyer et al. [13], and Van Wijngaarden et al. [14], among others, have analysed
the �ow between parallel and non-parallel plates. Williams and Lord [15] studied the �ow in
circular channels.
There have been several notable studies of the �ow inside cavities of complex shape. In

one study, the mould geometry is laid �at and then described through a series of simpler
geometries: radial �ow, �ow between parallel plates and �ow in circular channels [16, 17].
The �nite-element has been used to simulate the Hele-Shaw �ow as applied to injection and
compression mould �lling [18, 19]. Given the moving boundaries involved, it is necessary to
generate a new mesh after each successive time step. The cost and inconvenience of �nite-
element remeshing has led to the use of the boundary-element techniques in general cavity
�ow [20, 21], and the Hele-Shaw �ow in particular [22, 23]. While the BEM has obvious
advantages over conventional domain methods for the treatment of moving-boundary problems,
it su�ers from severe drawbacks, the most notable of which is its lack of capability to handle
non-linearities such as inertia and non-Newtonian e�ects, or even a cavity of variable thickness.
Hence, the simulation of transient free-surface �ows remains challenging since, on the one
hand, conventional domain methods are inadequate for adaptive meshing, and, on the other
hand, integral methods such as the BEM, which can handle more easily adaptive meshing,
cannot incorporate non-linearities from the governing equations. As a result, the physical �ow
remains poorly understood.
In the present paper, the di�culties with conventional methods are addressed for the �ow

inside thin cavities of arbitrary thickness. A hybrid Lagrangian/Eulerian method is proposed,
which consists of mapping the irregular moving domain, at each time step, onto a �xed
rectangular domain. The �ow is expanded in Fourier series in the spanwise direction, and
the �nite-di�erence method is used to obtain the expansion coe�cients. The method is used
to obtain the three-dimensional �ow �eld inside a thin cavity of variable thickness. This
corresponds to the solution of a large class of free-surface �ow problems, with close relevance
to polymer processing. The �ow is typically encountered during the �lling stage inside a thin
cavity as in injection moulding. The lubrication assumption is adopted to derive the resultant
equations for a Newtonian �uid, averaged over the thickness of the cavity. The in�uence
of cavity thickness is particularly explored. The �ow �eld is examined for the case of �at,
contracting, expanding, and modulated cavities.
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2. PROBLEM FORMULATION

In this section, the basic assumptions for the lubrication are �rst brie�y reviewed for viscous
�uids. The theory is then extended to include the transient free-surface �ow inside thin three-
dimensional cavities of arbitrary shape. The case of symmetric cavities with thickness varying
streamwise will then be considered in detail.

2.1. General lubrication formulation

Consider an incompressible Newtonian �uid of viscosity �. Inertia e�ects are assumed neg-
ligible. The lubrication assumption, which is the hydrodynamic analog of thin-shell theory,
is applied to determine the �ow. In most lubrication �lms the thickness of the �lm is small
compared with its lateral dimensions. Properly handled, this observation can be used to elim-
inate from the hydrodynamic equations and boundary conditions the dependence upon one
of the three spatial variables. The continuity equation is integrated across the �lm and the
Navier–Stokes equation is used to evaluate the quantities appearing as integrands. The conser-
vation equations are formulated in the narrow-gap limit. These equations are �rst cast in terms
of dimensionless variables. Typically, in thin-cavity �ow, there are three characteristic lengths,
L1 and L2 along the lateral directions, and H , representing the thickness of the cavity in the
third (depthwise) direction. It is usually assumed that L1 and L2 are of the same order, L, say.
In this case, L and H will be taken as the reference length and thickness in the horizontal
and vertical directions, respectively, with (x; y) and z being the corresponding dimensionless
co-ordinates. The horizontal, (ux; uy), and vertical, uz, velocity components are scaled by V
and �V , respectively, where V is a reference velocity, and �=H=L is the typical aspect ratio
in the problem. The time, t, is scaled by L=V , and the pressure, p, is scaled by �V=L�2. The
position vector of a general point in space is denoted by r(x; y; z), and its projection in the
(x; y) plane is denoted by x(x; y).
Figure 1 illustrates schematically the general �ow and notations used. The �gure shows

a step of the �lling stage of a thin cavity of general shape. At any time, the �uid �lls the
domain that is delimited the exit, �e, cavity wall �w, and front �f . If terms of O(�2) and higher
are excluded, and in the absence of inertia, the conservation equations reduce to the following
equation for the pressure [4]:

(h3p;x); x + (h3p;y); y=0 (1)

where h= h(x) is the prescribed dimensionless thickness of the cavity. Note that the pressure
p(x; t) is reduced to its hydrostatic part and does not vary with the vertical direction, z. The
velocity components are given by

u�(x; y; z; t)=
p;�(x; y; t)

2
[z − h1(x; y)][z − h2(x; y)]; �= x; y (2)

where h1(x) and h2(x) are the heights of the lower and upper cavity surfaces, respectively
(see Figure 1). Note that h(x)= h2(x)− h1(x). If the thickness is constant, then the pressure
becomes governed by Laplace’s equation. The problem thus reduces to the determination of
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Figure 1. Schematic illustrating the transient free-surface �ow inside a cavity induced by
the imposed �ow at the cavity entrance, �e.

the scalar variable, p(x; t). This is a quasi-steady problem since the time dependence is not
explicit in the pressure equation.

2.2. Domain of computation

For simplicity, the cavity is assumed to have straight lateral edges and symmetric with
respect to the (x; y) plane. The cavity thickness is also assumed to vary with x. Thus,
h2(x)=−h1(x)= h(x)=2. The domain of computation is obviously the projection, �xy(t),
of the physical domain �(t) onto the (x; y) plane. The front shape at any time is gen-
erally given by x=X (y; z; t). In the (x; y) plane, this the shape of the front is given by
x=L(y; t)≡X (y; z=0; t) be the shape of the front. The domain of computation becomes
�xy(t)= {(x; y) | x∈ [0; L]; y∈ [0; 2�]}.

2.3. Boundary and initial conditions

The lubrication formulation does not accommodate adherence conditions at the lateral walls.
Stick boundary conditions can only be applied at the bottom and upper rigid cavity surfaces.
In this case, only the no-penetration condition applies along the lateral walls. This assumption
is not as unrealistic as it seems at �rst, since �ow core in a thin cavity is not signi�cantly
a�ected by the boundary-layer region at the lateral walls. The �ow is assumed to be driven by
an imposed (dimensionless) pressure gradient, q0(y; z; t), at x=0, so that the general boundary
condition at the entrance to the cavity is given by

q(x=0; y; z; t)= q0(y; z; t); x∈�e (3)

where q= n · ∇p is the normal directional derivative of the pressure, with n being the normal
vector to �e. The pressure gradient may be either maintained �xed at all time, or adjusted
according to the �ow conditions inside the cavity (mould). A time-dependent pressure gradient
corresponds typically to the inlet condition in injection moulding where the pressure rather than
the �ow rate is varied with time at the source of �uid. Although a variable pressure gradient
can be easily accommodated by the present formulation, q0 will be assumed to depend only on
y. Thus, at the entrance to the cavity, q0(y; t)=−p;x(x=0; y; t). In this work, condition (3)
is assumed to be of the form
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The pressure gradient rather than the �ow rate is imposed by prescribing p;x at x=0. In
this work, the following expression is adopted:

p;x(x=0; y; t)=−q0(y; t)=y(y − 2�) (4)

Since the lubrication assumption can only accommodate the no-penetration conditions at
the lateral walls, then

q(x; t)= n(x; t) · ∇p(x; t)=0; x∈�w(t) (5)

where n is the unit normal to �w(t). At the lateral walls, Equation (5) yields in this case

p;y(x; y=0; t)=p;y(x; y=2�; t)=0 (6)

At the front (free-surface) the imposition of a suitable dynamic condition is not obvious
for thin-cavity �ow. It is clear that for the general three-dimensional �ow, and in the absence
of surface tension e�ect, a zero-traction condition must apply at the front. Let n(r; t) be the
unit normal vectors to the front, �f (t). In absence of surface tension e�ect, the traction, t,
must vanish at the front, or

t(r; t)=0; r∈�f (t) (7)

To leading order, however, the dynamic condition reduces to the vanishing of the pressure at
the free-surface [4]. This condition is conveniently taken as

p(x=L; y; t)=0 (8)

There remains the kinematic condition at the free-surface, which is the least obvious among
the boundary conditions to implement. In a Lagrangian representation, such as the present
formulation, the moving boundary is assumed to deform with the �uid velocity, such that the
evolution of �f (t) is governed by the equation

dr
dt
= u(r; t); r∈�f (t) (9)

where u is the velocity vector. The following form of the kinematic condition (9) will then
be used in this work:

Ux(y; z; t)=X; t(y; z; t) +Uy(y; z; t)X;y(y; z; t) (10)

where U�(y; z; t)= u�(x=X; y; z; t) are the velocity components at the front. It is important to
observe that the z dependence in Equation (10) is implicit, and that X is regarded as dependent
on x and y for a given z value. Equation (10) gives explicitly the three-dimensional shape
of the front. However, only L(y; t) is needed in order to solve for the pressure. The relevant
kinematic condition then reduces to

L; t(y; t) + V (y; t)L;y(y; t)=U (y; t) (11)

where the velocity components at the front in the (x; y) plane are introduced as

U (y; t)=Ux(y; z=0; t) and V (y; t)=Uy(y; z=0; t) (12)

Although easy to implement, the resulting scheme based on Equation (9) tends to sweep
points on the moving boundary along the tangent to the moving boundary, even if only small
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shape changes take place. Consequently, frequent redistribution of the moving-boundary points
or remeshing would be necessary when relation (9) is used. In the current study, the di�culty
of node sweeping will be easily circumvented as will be observed below.
Regarding the initial conditions for the problem, it is clear from Equations (1), (2) and

(11), that the initial shape of the front is the only condition needed. Ideally, the computation
should begin with the front coinciding with the entrance to the cavity, ready to �ow under the
action of a prescribed pressure or velocity distribution. However, this would correspond to a
zero initial domain, �(t=0)=0, and no initial discretization can be performed (for instance,
if a �nite-di�erence or element scheme is envisaged). In this work, the �uid is assumed to
occupy a small portion of the cavity. The initial amount and front shape of the �uid are not
crucial over the long time. Similarly to injection moulding, the pressure rather than the �ow
rate will be prescribed at the (die) exit, as in Equation (4), and will be assumed maintained
at all time. The initial domain occupied by the �uid in the (x; y) plane is taken to correspond
to �xy(t=0)= {(x; y)|x∈ [0; L(y; t=0)], y∈ [0; 2�]}, where L(y; t=0) is the initial shape of
the front, which will be prescribed later.

3. SOLUTION PROCEDURE

The lubrication problem is solved by �rst mapping the �ow domain onto a rectangular domain.
A modi�ed pressure is introduced, which reduces to the pressure when the cavity thickness
is constant. The method of Galerkin projection is used, whereby the modi�ed pressure is
expanded in Fourier series. The expansion coe�cients are then determined by solving the
projected pressure equation. Once p(x; t) is determined from Equation (1), at a given time,
t, the velocity components are then determined. Particularly, the velocity components at the
front are required in order to determine the evolution of the front.

3.1. Domain mapping

In order to represent the modi�ed pressure, S, in series of orthonormal functions, the domain
of computation must be rectangular. For this, the physical domain (x; y)∈�xy(t) is mapped
onto the domain (�; �)∈ [0; 1]× [0; 2�]. The mapping is schematically shown in Figure 2.
Thus,

�(x; y)=
x

L(y; t)
; �(x; y)=y (13)

Upon use of expressions (13), Equation (1) for the modi�ed pressure reads

[1 + (�L; �)2]p;�� +
[
2�(L;�)2 − �LL;�� + 3 h;�h

]
p;� − 2�LL;�p;�� + L2p;��=0

(14)

subject to the following boundary conditions:

p;�(�=0; �; t)= �(�− 2�) (15)

p(�=1; �; t)=p;�(�; �=0; t)=p;�(�; �=2�; t)=0 (16)

Note that p is coupled to the shape of the front, L(y; t), which must be determined as part of
the solution, thus making the problem nonlinear. The shape of the front in turn delimits the
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Figure 2. Mapping of the middle slice of the time-dependent physical domain in the (x; y)
plane onto the rectangular computational domain in the (�; �) plane.

domain in the (x; y) plane. Once p(x; y; t) is obtained at a given time, the horizontal velocity
components at the front are evaluated. L(y; t) is then determined by solving the kinematic
condition.

3.2. Pressure expansion

The modi�ed pressure can be expressed as

p(�; �; t)=
∞∑
n=0
pn(�; t) cos(n�) (17)

Note that expression (17) satis�es the two lateral boundary conditions (16). Obviously, a
truncation level will have to be imposed, leading to a �nite number of modes, N , in the
expansion. If expression (17) is substituted into Equation (14), and the Galerkin projection
method is used, then the following recursive relation is obtained for the pressure coe�cients:

N∑
n=0
Amnpn; �� +

N∑
n=0
Bmnpn; � +

N∑
n=0
Cmnpn=0 (18)

where m∈ [1; N ], and the time-dependent coe�cient matrices are given by
Amn(�; t) = 〈cos(m�) cos(n�)[1 + (�L; �)2]〉

Bmn(�; t) =
〈
cos(m�)

{[
2�(L;�)2 − �LL;�� + 3 h;�h

]
cos(n�) + 2nLL;� sin(n�)

}〉

Cmn(t) =−n2〈L2 cos(n�) cos(m�)〉

(19)

where the notation 〈 〉= ∫ 2�
0 d� is used. In this case, the Galerkin projection consists of multi-

plying Equation (14) by cos(m�) for m∈ [1; N ], and integrating it with respect to � from 0 to
2�, after substituting expression (17). The boundary conditions for system (18) are deduced
from conditions (15) and (16), leading to

pn(�=1; t)=0 (20)

pn;�(�=0; t)= 〈�(�− 2�) cos(n�)〉 (21)
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Once Equation (18) is solved, p(x; t) is determined over the domain �xy(t), in particular
along the front x=L(y; t), which in turn allows the determination of the velocity at the front.
Similarly to the pressure expansion (17), L(�; t), is expanded as:

L(�; t)=
N∑
n=0
Ln(t) cos(n�) (22)

The Galerkin projection is used to solve Equation (17), and the coe�cients Ln(t) are governed
by following set of coupled ODEs:

dLm(t)
dt

=
N∑
n=0
Dmn(t)Ln(t) + Em(t); m∈ [1; N ] (23)

where the coe�cients are given by

Dmn(t) = n〈cos(m�) sin(n�)V (�; t)〉
Em(t) = 〈cos(m�)U (�; t)〉

(24)

The initial condition needed are based on the shape of the front, which in this work is assumed
to be

L(y; t=0)=1 +
(y
�

)4
− 4

(y
�

)3
+ 4

(y
�

)4
(25)

There are thus N initial conditions needed for the problem, which take the form

Ln(t=0)= 〈cos(n�)L(�; t=0)〉=� (26)

The problem clearly reduces to a set of coupled equations (18) and (23) involving 2N un-
knowns, which may be solved implicitly or explicitly with time. It is found that an implicit
scheme is not necessary for the present problem. A forward explicit �nite-di�erence in time
is used to solve Equation (23). In this case, system (18) constitutes a set of N partial di�er-
ential equations in � and t. However, since time is not explicitly apparent, the system can be
regarded as a set of 2N �rst-order ordinary di�erential equations in � at a given time, t. This
is a two-point boundary-value problem, which is solved using a variable order, variable step
size �nite-di�erence method in �, with deferred corrections (IMSL-DBVPFD). The numerical
assessment of the method is covered in the next section.

4. NUMERICAL ASSESSMENT AND RESULTS

The transient free-surface �ows inside thin cavities of constant and variable thickness are
examined. The in�uence of cavity thickness is investigated for the �ow inside a cavity of
constant thickness, the �ow inside expanding and contracting cavities, and the �ow inside
a modulated cavity. All results are given in terms of dimensionless quantities. Although the
�ow behaviour inside a �at cavity is somewhat predictable, it will be studied in some detail
since it constitutes a reference base for the more complicated �ow inside cavities with vari-
able thickness. In addition, the results allow a close quantitative assessment of the �ow in
simple cavities.
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Figure 3. Transient �ow inside a �at plate with initial curved domain. The fronts
are shown at equal time intervals over a period of 5 time units. The arrow in this

and subsequent �gures indicates the time direction.

Figure 4. Distribution of the streamwise velocity component, U (y; t), at the front for
0¡t¡5, for the �ow corresponding to Figure 3.

4.1. Flow inside a �at cavity

Consider the �ow inside a cavity of constant thickness. The length and the width are taken
to lie along the x and y directions, respectively (see Figure 2). The thickness of the cavity is
assumed to be constant, so that h1 = 0, and h2 = 1. Although the �uid is �owing predominantly
in the x direction, there is a strong secondary �ow in the y direction as well. Figure 3 shows
the evolution of the front in the (x; y) plane between the two �at plates at z=0:5. The front
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Figure 5. Distribution of the lateral spanwise velocity component, V (y; t), at the front for
0¡t¡5, for the �ow corresponding to Figure 3.

Figure 6. Phase plots of the streamwise and lateral velocity components, U (y; t) and V (y; t),
at the front for 0¡t¡5, for the �ow corresponding to Figure 3.

is shown at equal intervals over a period of 5 time units. Note that the initial domain is
shown only partially for clarity since it extends to x=0. The �gure indicates a relatively
dominant streamwise �ow at the walls (slip) y=0 and 2�, leading to the straightening of
the front with time despite the parabolic driving pressure gradient at the entrance x=0. The
lateral �ow tends to diminish in intensity with �uid advancement. The �gure also indicates a
decrease in front advancement rate with time.
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TRANSIENT FREE-SURFACE FLOW 71

Figure 7. Pressure along the centre of the domain (y=�) for the stationary �ow inside
a �at plate based on �ve levels of truncation, M =1; 2; 3; 4 and 5. The distribution

based on the BEM is also included.

Figure 8. Evolution of the front tip position, Xm, and the contact position, Xc, with
time for the �ow inside a �at plate (M =5). The �gure shows the in�uence of the

time increment for the range �t ∈ [0:01; 0:5].

The �ow �eld at the front is further appreciated by examining the velocity components at
the front. Figures 4 and 5 show the distributions of the streamwise and spanwise components
at the front, U (y; t) and V (y; t), respectively. The di�erence between the velocity of the front
tip, U (�; t) and that of the points of contact, U (0; t) and U (2�; t), is obvious from Figure 4.
The �gure shows that U (�; t) is roughly 30% smaller than U (0; t) and U (2�; t) in the initial
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Figure 9. Flow inside an expanding cavity with slope=0:1: (a) the fronts are shown at equal time
intervals over a period of 5 time units; and (b) distribution of the streamwise velocity component,

U (y; t), at the front at t=0; 1; 2; 3; 4 and 5 (see legends in Figure 10(a)).

stages. This di�erence decreases with time (with the straightening of the front). It is interesting
to observe that the velocity of the contact point increases initially before decreasing with time.
The maximum reached depends on the shape of the cavity as will be seen below. The �gure
also shows that the velocity tends to level o� in the long time. The velocity component along
the spanwise direction, V (y; t), is strongest initially, and is generally of the same order of
magnitude as U (y; t), as depicted from Figure 5. As expected, the spanwise velocity vanishes
at y=0 and y=2�. It decreases considerably in the later stages. The rate of decrease is
strongest initially. The overall nonlinear behaviour is re�ected in Figure 6, which shows the
phase plot in the (U;V ) plane. Each phase plot gives the behaviour of the velocity components
along the front at a given time. The closed cycles decrease in overall diameter, and move
closer to the V -axis, con�rming the weakening of the �ow with time. Initially, the cycles
are distorted, indicating the presence of strong non-linearities. The cycles gradually adopt the
shape of ellipses, re�ecting the linear behaviour of a harmonic oscillator.
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Figure 10. (a) Distribution of the spanwise velocity component, V (y; t), at the front for
the �ow corresponding to Figure 9(a); and (b) phase plots of the streamwise and lateral

velocity components, U (y; t) and V (y; t).

The accuracy of the results and convergence of the method are assessed by examining the
in�uence of the number of modes and time increment in the �nite-di�erence scheme. The
comparison is also carried out against results based on the BEM for a �xed domain. Figure 7
shows the in�uence of the number of modes, M , on the pressure distribution, p(x; y=�),
along the horizontal direction x inside the initial domain (at t=0). There is a signi�cant
discrepancy between the solution based on M =1 and those based on M¿1. When M =1,
the pressure is overestimated. The error is uniform with respect to x. Moreover, the front tip
position slightly exceeds x=2 as a result of the poor representation of the front shape. The
inclusion of higher-order modes leads to good agreement with the BEM solution. Convergence
is essentially attained for M¿2. This fast rate of convergence is typical of thin-cavity �ow,
including the �ow inside a cavity of variable thickness. However, additional modes are needed
for more complex cavity shapes.
The in�uence of the time increment, �t, is assessed in Figure 8, where the evolution of

the horizontal position, Xc, of the contact point between the moving front and solid wall,
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Figure 11. Flow inside a contracting cavity with slope=−0:1: (a) the fronts are shown at equal time
intervals over a period of 5 time units; and (b) distribution of the streamwise velocity component,

U (y; t), at the front at t=0; 1; 2; 3; 4 and 5 (see legends in Figure 12(a)).

and that of the front tip, Xm, are plotted against time for �t ∈ [0:01; 0:5] over a period of 5
time units. Convergence is attained for �t6 0:1. The contact point between the front and
lateral walls moves at a faster rate than the front tip initially as shown in Figure 8. The
rate of advancement, dXc=dt, tends, however, to decrease with time, and eventually becomes
comparable to dXm=dt, re�ecting the straightening of the front (see Figure 3). Based on the
above results and additional numerical assessment for other �ow con�gurations, all the results
reported in this work are obtained with M =5 and �t=0:1.

4.2. Flow inside expanding and contracting cavities

So far, all results reported above have been restricted to a cavity of constant thickness, h(x)=1
and �at walls. In this section, the cavity thickness is varied with x linearly. The in�uence
of a variable thickness can be intricate given the local character of the �ow. Two types of
thickness distributions will be investigated, corresponding to linearly diverging, and linearly
converging walls. Consider then the �ow inside a cavity of thickness h(x)= ax+ 1, where a
is the slope of inclination of the cavity walls.
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Figure 12. (a) Distribution of the spanwise velocity component, V (y; t), at the front
for the �ow corresponding to Figure 11(a); and (b) phase plots of the streamwise

and lateral velocity components, U (y; t) and V (y; t).

Consider �rst the �ow inside an expanding cavity, with a=0:1. The evolution of the front
and the velocity �eld at the front are depicted in Figures 9 and 10. The results should be
compared with those corresponding to a �ow inside a �at plate (Figures 3–6). Qualitatively,
the expansion does not seem to cause a signi�cant change in �ow behaviour. However, a
deeper insight is gained regarding the correlation between front shape and velocity. First,
the front position in Figure 9(a) indicates an overall decrease of (roughly) 10% in �ow
because of the expansion. However, the streamwise velocity distributions in Figure 9(b) hint
to a decrease of 30%. On the one hand, in this case the discrepancy is larger between the
velocity of the front tip and that of the contact point. Thus, the expansion causes a delay
in the straightening of the front. On the other hand, the spanwise �ow is weaker as a result
of the expansion (compare Figures 10(a) and 5). This is not intuitively obvious since one
expects the spanwise �ow to be stronger at a front with higher curvature. The phase plots in
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Figure 13. In�uence of cavity slope for contracting, �at and expanding cavities for slope
a∈ [−0:1; 0:1]: (a) evolution of the contact point position, Xc, with time; and (b) velocity

at the contact point position, dXc=dt, with time.

Figures 10(b) and 6 also con�rm these observations. This trend in �ow behaviour becomes
even more obvious once the case of contracting �ow is examined.
The results corresponding to a �ow inside a contracting cavity are shown in Figures 11

and 12 for a=−0:1. The �ow is obviously much faster in this case (Figure 11(a)), approxi-
mately 30% faster than the �ow inside a �at cavity. More interestingly, the streamwise velocity
reaches a minimum and increases again with time (Figure 11(b)). This is in sharp contrast
to the �ow inside a �at and expanding cavities, where U (y; t) decreases monotonically with
time (see Figures 4 and 9(b)). The velocity of the contact point decreases dramatically rela-
tively to that of the front tip after �ow inception. The di�erence in velocity is not necessarily
accompanied by an increase in spanwise �ow (see Figure 12(a)). The di�erence, however,
diminishes with time. The spanwise �ow continues to gain in strength with cavity contrac-
tion, and, unlike U;V decreases monotonically with time (Figure 12(a)). The phase plots in
Figure 12(b) re�ect a signi�cant level of non-linearity in contracting �ow. The non-linearity
also manifests itself in the form of undulations in the streamwise velocity distribution. The
non-linearity is not limited to the initial stage as in Figures 6 and 10(b).
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Figure 14. Flow inside a modulated cavity (A=0:2 and !=6): (a) the fronts are shown at equal time in-
tervals over a period of 5 time units; and (b) distribution of the streamwise velocity component, U (y; t),

at the front at t=0; 1; 2; 3; 4 and 5 (see legends in Figure 15(a)).

The overall in�uence of the wall slope, a, on the �ow is illustrated in Figure 13. The
�gure displays the evolution of the contact point position, Xc(t), (Figure 13(a)) and that of
its velocity, Uc(t) (Figure 13(b)) for the range a∈ [−0:1; 0:1], including the case of a �at
cavity (a=0). Figure 13(a) shows the overall decrease in Xc as a increases from −0:1. The
decrease is sharpest near a=−0:1; a saturation is observed near a=0:1. This means that, in
practice, the �ow intensi�es quickly with cavity contraction. This intensi�cation becomes more
obvious by inspecting the overall velocity distributions in Figure 13(b). The velocity at the
lateral walls exhibits generally a maximum initially, and then drops thereafter with time. This
maximum strengthens with cavity contraction, and gradually disappears as a increases. There
is also a weak minimum at the later stages, which becomes more pronounced with cavity
contraction. The overall in�uence of a is stronger on Uc than on Xc. Similar conclusions can
be drawn upon examination of the position and velocity of the front tip.
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Figure 15. (a) Distribution of the spanwise velocity component, V (y; t), at the front
for the �ow corresponding to Figure 14(a); and (b) phase plots of the streamwise and

lateral velocity components, U (y; t) and V (y; t).

4.3. Flow inside an undulated cavity

For the �ow inside a cavity with modulated walls, the thickness is taken as h(x)=
1− A sin(!x), where A is the amplitude and ! is the frequency of modulation. Figure 14(a)
shows the evolution of the front for A=0:2 and !=6. The wall modulation gives rise to the
additional waviness of the front. Overall, the successive front curves tend to disperse during
a contraction of the cavity (Xm¡2:4 and 3¡Xm¡3:3), and compress during an expansion
of the cavity (2:4¡Xm¡3 and Xm¿3:3). More interestingly, the response of the movement
along the walls is not in phase with that of the front tip. Indeed, the front curves near the
wall tend to disperse (compress) later than near the tip.
The dynamic response becomes more obvious from Figures 14(b) and 15, which shows the

evolution of the velocity components at the front (Figures 14(b) and 15(a)) and corresponding
phase plots (Figure 15(b)). The results are again shown for A=0:2 and !=6. Upon �ow
inception (t=0), the velocity experiences a signi�cant jump because of cavity contraction.
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Figure 16. In�uence of cavity modulation amplitude (!=6): (a) evolution of the front tip position,
Xm, with time; and (b) velocity at the front tip, dXm=dt, with time.

The streamwise velocity distribution indicates that the most signi�cant jump occurs at the
walls (y=0 and 2�), followed by a relatively important drop in U between the walls and
the front tip (y≈�=2 and 3�=2), only to regain some strength at the tip (y=�). This is in
sharp contrast with the �ow in a non-modulated cavity, where the streamwise velocity at the
front tip is the weakest. The corresponding spanwise velocity and phase plot indicate that the
spanwise �ow is essentially absent over the core region of the cavity (2¡y¡4). However,
the spanwise �ow gains considerable strength near the walls. The �ow reaches the end of the
contraction at t=1. In this case, the �ow diminishes considerably. The streamwise velocity,
U , exhibits two maxima and a minimum at the tip. At t=2, the �uid begins to move through
the �rst cavity expansion, where it exhibits a behaviour similar to that in Figures 4–6. Some
modulation is, however, present in the U and V distributions.
The overall in�uence of the modulation amplitude is depicted from Figures 16 and 17, for

!=6 and the range A∈ [0; 0:3]. The case A=0 corresponds to a cavity of constant thickness,
and is included for reference. Figures 16(a) and 16(b) show the evolution of the front tip
position, Xm(t), and that of the tip velocity, Um(t). The �gure shows that the sudden initial
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Figure 17. In�uence of cavity modulation amplitude (!=6): (a) evolution of the contact point position,
Xc, with time; and (b) velocity at the contact point position, dXc=dt, with time.

jumps in position and velocity increase with A. The jump is, however, followed by a sharp
drop in Um to an almost zero level. This corresponds to a leveling in Xm. There is a maximum
in Um that tends to occur at a later time as A increases. The trend is similar in Figure 17,
where Xc(t) and Uc(t) are shown. However, the response at the contact with the walls is
more modulated than at the front tip.
The e�ect of modulation frequency of the cavity walls is as signi�cant as that of the

amplitude. Figures 18 and 19 show the in�uence of !∈ [0; 6] for A=0:2. Note that !=0
corresponds to a �at cavity. For small !; Xm begins to display some modulation, and Um
experiences a relatively weak maximum, which occurs later as ! increases. Another maximum
appears initially as ! increases further. The emergence and timing of the maxima are more
evident when Uc is examined (Figure 18(b)). These maxima tend to weaken as ! increases.

5. CONCLUSION

The general lubrication formulation is extended for transient free-surface �ow inside thin three-
dimensional symmetric cavities of thickness varying in the streamwise direction. The problem
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Figure 18. In�uence of cavity modulation wavenumber (A=0:2): (a) evolution of the front tip position,
Xm, with time; and (b) velocity at the front tip, dXm=dt, with time.

reduces to the Reynolds equation for pressure, coupled with front movement equation. A
semi-analytical approach is used to solve the moving-boundary problem. The irregular and
time-dependent domain is mapped onto the rectangular domain, and the transformed equations
are solved by expanding the pressure and front position in Fourier series in the spanwise
direction. The expansion coe�cients are determined by solving the projected equations using
an explicit forward di�erence scheme in time, and multiple-step �nite-di�erence method in
space. Three transient free-surface �ow con�gurations are examined. In all cases, the driving
pressure gradient is parabolic and maintained �xed at the cavity entrance. The initial domain
occupied by the �uid is also parabolic. The �ow inside a �at plate is studied �rst. In this
case, the �ow in the middle region tends to accelerate initially relative to the �ow at the
lateral walls. However, the slip at the walls eventually renders the front straight again, with
considerable weakening of the spanwise �ow. The �ows inside contracting and expanding
cavities are also examined. Although the evolution of the front is always monotonic with
time, that of the velocity at the front can be oscillatory if the degree of contraction of the
cavity is signi�cant. The velocity of the contact point along the lateral walls is usually larger
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Figure 19. In�uence of cavity modulation amplitude (A=0:2): (a) evolution of the contact point position,
Xc, with time; and (b) velocity at the contact point position, dXc=dt, with time.

than that at the front. Finally, however, the �ow inside a modulated cavity indicates that the
slip velocity can be low enough to allow the front to advance at a faster rate, leading to its
own undulation with a strong lateral �ow. The �uid along the wall does not compress and
expand simultaneously with the front centre (see Figure 14).
A number of assumptions were made in the present study that could easily relaxed if more

complex �ow con�gurations are contemplated. These assumptions are mainly of geometrical
nature, namely related to cavity symmetry and thickness variation. For non-symmetric cavities,
the formulation is generalized by taking a more general mapping than in Equation (13),
and the pressure expansion (17) would have to include both cosine and sine terms. More
general initial and conditions could easily accommodated including front shape and pressure
variation and history. Although these issues are of importance, the major objective of the
present work is to propose a methodology that is e�cient and easy to implement to solve
complex problems with a moving domain; only a few degrees of freedom are required for
convergence. The complexity of the cases studied re�ect the capabilities and potential of the
proposed methodology.
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